

About the Test

- 34 Questions
- 20% of Semester Grade
- Calculator Okay
- 75 minutes
- Sample Questions in Appendix

Suggestions

- Look through sample questions
- Get enough sleep
- Visit Math Lab
- Study with friends

Topics

- Averages & Weighted Averages
- Counting Combinations
- Algebra: Multiplying / Combining Like Terms
- Different Bases
 - Whole Number base conversions
 - Decimal / Fraction conversions (Not on test)
 - Mayan Numbers Normal & Solar Numbers
 - Unknown Bases / Finding Numbers
- Using Exponents

Averages

- Ordinary Average
 - Add the numbers
 - Divide by the number of numbers

Averages

- Weighted Average
 - Multiply each number by its weight
 - Add
 - Divide by the total weight

Calculate your GPA if you get a B in a 4-unit class an A in a 2-unit class	: B+ A+ B+ C (4)3+(2)4+(3)3+(3)2
a B in a 3-unit class a C in a 3-unit class	$\frac{12+8+9+6}{12} = \frac{35}{12} = 2.92$

Averages

- Average Speed
 - Determine distance for each part
 - Total Distance / Total Time

Find your average speed if you ride your bike

20 mph for 30 minutes then 15 mph for an hour.

10 miles

15 miles

avg. speed = $\frac{10 + 15}{1.5} = \frac{25}{1.5} = \frac{16.67}{1.5} = \frac{16.87}{1.5} = \frac{16.87}{1.5}$

Counting Combinations

- "Basic Counting Principle"
- Count ways things can be done
- Multiply

If you can order three different soups and four different pastas for a dinner combo, how many total choices do you have?

3 x 4 = 12

Bases – Whole Numbers

- Converting from Base 7 to Base 10
 - Determine Place values for each place
 - Add up the digits

1,3,4,7	
1×49+ 3×7+ 4×1	
49 + 21 + 4	
74	

Bases – Whole Numbers

- Converting to a different Base
 - Determine place values then guess
 - Repeated long division

Write 32 in base 7
71 = 447
Write 500 in base 7
7/ 10 0
7/500 7/71 7/10 49 × 7× 7
10 7
3 - 1) -
13137

Bases – Arithmetic

- Addition
- Multiplication

Bases – Unknown

- Number written in unknown base
- Unknown number (Chinese Remainder Theorem)

54 is written as 42x where x is an
unknown base - find the base
,4,2,
$x + 4x + 2 \cdot 1 = 54$
4x = 54-2
4x = 52
x = 13
x = 13

Bases – Unknown

- Number written in unknown base
- Unknown number (Chinese Remainder Theorem)

A number which in base 5 ends in 3 and in base 7 ends in 4 is: 3,8,13,18,23,28,33,38,43 4,11,18,25,32 18 $33_5 = 24_7$

Mayan Numbers

- Base 20
- Digits written as: 5 = | and 1 = .
- "Common" Mayan: 400 / 20 / 1
- "Solar" Mayan: 360 / 20 / 1


```
Add: |||; ...
+ |||;|...
|||||;||
```

```
Add: 111; ...
+ 111; 1...
• ; 11 ; 11 •
```



```
Add: |||; ...

+ |||; ||...

; ||; ||...

400 20 |

| x400 + || 0 x20 + || x |

400 + 200 + ||

6 ||
```


1. Zero as an exponent
$$\begin{array}{rcl}
a^0 &=& 1 \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & \\
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

Examples $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$ $4^{-1} = \frac{1}{4}$ $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$

$$\chi^{7} \cdot \chi^{10}$$
 $3^{-2} = (\chi^{7})^{10}$
 $\frac{\chi^{20}}{\chi^{5}}$
 $16^{0.5} = \chi^{0.5} = \chi^{$

$$X^{7} \cdot \chi^{10} = \chi^{17} \qquad 3^{-2} = \frac{1}{3^{2}} = \frac{1}{9}$$

$$(X^{7})^{10} = X^{7 \cdot 10} = X^{70}$$

$$\frac{X^{20}}{X^{5}} = \chi^{15} \qquad 16^{0.5} = \sqrt{16} = 4$$

$$4^{0} = 1 \qquad q^{1.5} = 9^{1} \cdot 9^{0.5} = 9 \cdot \sqrt{9} = 9 \cdot 3 = 27$$

Exponents – Larger Exponents

- Addition 8+10
- Multiplication 8x10
- Exponents 8¹⁰
- Arrow Notation 8↑↑10
- Arrow Notation 8↑↑↑10

(This list goes from smaller to larger)