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CHAPTER 25:  Set Theory and Infinite Sets 
 
   ...there was once in man true happiness of which there now remain to him only the mark and 

empty trace, which he in vain tries to fill from his surroundings,....  But these are all inadequate, 
because the infinite abyss can only be filled by an infinite and immutable object, that is to say, 

only by God Himself.128 
 
 
The following discussion of set theory and infinite sets is foundational to much of modern 

mathematics, and at the same time is in part quite esoteric and even controversial.  As another indication of 
the relationship of mathematics to other disciplines, I will follow the development of set theory in Scaling 

the Secular City by Professor J.P. Moreland.129  In this book, Dr. Moreland's discussion of set theory and 
infinity is essential background for his apologetics discussion of a proof for the existence of God.  I refer the 
interested reader to his book for the details of the apologetics discussion. 

 
Sets 

A set is a collection of objects called its members.  In most of our examples, the objects will be 
numbers.  Sets will often be designated by capital letters.  Sets can be specified or defined in two ways:  1) 
by means of a list of the members in the set; or  2) by means of a rule by which you can determine whether 
or not an object is a member of the set .  The following examples illustrate these two possibilities. 
 
  Example 1: 1)   {2,4,6,8,10} 
    2)   the set of even numbers less than 12 
    3)   the set of even numbers 
 

The set A is a proper subset of a set B if every member of A is a member of B, but B contains at least 
one member not in A. 
 
  Example 2: 1)  {2,4} is a proper subset of {2,4,6,8,10} 
    2)  {2,4,6,8,10} is a proper subset of the set of even numbers 
    3)  the set of positive even numbers is a proper subset of the set of whole numbers 
 

Two sets A and B are equal, written A = B, if and only if  A and B have exactly the same members. 
 
  Example 3: 1)  {2,4,6,8,10} = the set of even numbers less than 12 
    2)  {1,3,5} = {3,1,5} 
 

Two sets A and B are have the same cardinality (or, "have the same number of elements"), written 
A ≈  B if and only if there is a 1–1 correspondence between A and B.  That is, if and only if the members of A 
and B can be paired in such a way that each member of A is paired with one and only one member of B, and 
vice-versa. 
 
 Example 4:  1)  {1,2,3,4,5} ≈  {2,4,6,8,10}  because 1 <-->2, 2<-->4, 3<-->6, 4<-->8, 5<-->10 is a one-to-

one correspondence between the two sets (there are other one-to-one correspondences). 
   2)  {2,3,4,5} is not equivalent to {2,4,6,8,10} because there is no one-to-one 

correspondence between these two sets.   
  

The set A is finite if it can be put into one-to-one correspondence with {1,2,3,....,n} for some whole 
number n.  Now recall that one of Euclid's general axioms was: The whole is greater than any of its parts.  
Here's the set theory version of that statement:  A finite set cannot be put into one-to-one correspondence 

                                                 
128cited in Eli Maor, To Infinity and Beyond, Birkhauser, Boston 1987, p.131. 
129J. P. Moreland, Scaling the Secular City, pp. 19-32. 
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with any of its proper subsets.  So we see that when Euclid thought about things made up of parts he 
assumed as axiomatic that the number of parts was finite. 
 
  Example 5:  Consider the set A = {2, 4, 6, 8, 10}.  I claim that since A can be put into one-to-one 

correspondence with {1,2,3,4,5}, A is finite.  And since A is finite, I can pick any proper subset of 
A, for instance {2, 4, 6, 8}, and there is no one-to-one correspondence between A and {2,4,6,8}.   

 
Potential and actual infinity 
  Sets which are not finite are sometimes described as potentially  infinite.  This means that the list 
of members of the set always could be increased from its current size.  At any moment in time, the list 
would be finite.  But any such finite list of members of the set fails to include some other members of the set. 

The set of counting numbers 1,2,3,... could be thought of as potentially infinite: you can always add 
more numbers to the list if and when you need them.  At the moment, the list goes to 3.  If you need to talk 
about the national debt of the United States, you can extend the list into the trillions.  One of the advantages 
of a place value notation for numbers (and exponent notation) is that it makes extending the list of whole 
numbers very easy.  In a system like the early Egyptians used, larger numbers required new symbols.   

Here's another mathematical example of a set which some people would call potentially infinite.  
The list of known prime numbers 2, 3, 5, 7, 11, 13, ... is finite; that is, if you checked with all the people alive 
today, there is a largest prime number that any of them could tell you.   However it has been known since 
the time of Euclid that there is no largest prime number (See Chapter 4).  The only problem is that finding 
the next prime number isn't nearly as easy as writing the next counting number. 

Now recall the lines of Euclidean geometry.  Euclid did not assert that lines were actually infinitely 
long.  Rather, he said that they could always be extended, but at any given time were finite in length.    The 
lines do not have a fixed finite length, because you could always make them longer than any fixed number.   

Now potentially infinite sets are both useful (like having the potential to get all the numbers you 
will ever need or being able to extend a line) and also somewhat problematic.   

In reality, when we gave answers to problems like this in the previous chapter, we were using 
mathematical concepts and procedures that avoided doing “an infinite amount of adding.”  Calculus 
includes a careful and consistent theoretical treatment of infinite series along with many practical 
applications of them.  The details are unimportant for our purposes at the moment.  The issues of infinity 
relating to infinite series were discussed by mathematicians, scientists, and philosophers for about 150 years 
before being put on a firm logical basis solely within the realm of potential infinity.  We may talk informally 
about “adding an infinite number of numbers”, but mathematicians in reality believe in no such thing. 

In contrast to potential infinity which is at all times finite, actual infinity is thought of as having 
“actually arrived” at infinity.  The set is not growing larger and larger, but has already reached “infinity”.  
There is no longer "potential"; the set is complete.  For instance, the set of counting numbers in this case is 
thought of as a completed list {1,2,3,4,...} which actually contains an infinite number of numbers.  We need 
some definitions and further discussion to clarify this meaning.  In the discussion below, “infinite” will be 
used in the sense of “actually infinite”. 

A set is infinite if it cannot be put into one-to-one correspondence with the set {1,2,...,n} for any n.  
A problem with this definition is that it has a negative approach in it.  It suggests that you would need to try 
something an infinite number of times and it would never work.  A more direct approach to infinite sets 
would be nice, and our previous discussion of finite sets provides just what we need. 

An equivalent definition for an infinite set is this: a set is infinite if it can be put into one-to-one 
correspondence with a proper subset of itself.  This is the opposite of a property we noticed was true for 
finite sets, so it makes sense that it would tell us exactly what infinite ("not finite") sets are like.  Let's 
consider an example. 
 
  Example 6: {1, 2, 3, 4, 5, . . . . } = E 
     
    {2, 4, 6, 8, 10 . . .. } = F 
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There is  a one-to-one correspondence between the two sets: match a number in E with the number 
in F directly below it.  In general, the number  n in E would be matched with 2n in F. 

This means E and F have the same cardinality, i.e., E and F have the same number of elements.  We 
write this relationship E ≈ F .  We need a new symbol for this number; mathematicians have used the first 
letter of the Hebrew alphabet, aleph, with a zero subscript, ℵ0 , read "aleph null", to represent this 

"quantity". 
Now if you are thinking that E and F can't have the same number of members since "E contains all 

the members of F and infinitely more, so E must be bigger than F", about the only response I can give is that 
you are not being consistent.  All we did was extend to infinite sets a definition of equivalent sets that 
worked quite well (fit our intuition) for finite sets.  The basic concept is the same, though it's implications in 
the realm of the infinite are sometimes a bit different.  But would it be reasonable to expect anything else?  
Isn’t it “reasonable” that the infinite would be somewhat different that the finite? 

 
  Example 7:  This is a non-mathematics example with which some of you may be familiar.  Do you 

know the old church hymn, "Amazing Grace"?  The last verse goes like this: 
 
     When we've been there ten thousand years 
     Bright shining as the sun, 
     We've no less days to sing God's praise 
     Than when we'd first begun. 
 
   John Newton, the author of this hymn (not to be confused with Isaac Newton the 

mathematician and scientist) is suggesting that the number of days we will spend in heaven 
from the time we enter is the same as the number of days we will spend in heaven after we 
have already been there 10,000 years!  In our notation, this says ℵ0 - 10,000  = ℵ0 . 

 
Notice that Euclid’s axiom “the whole is greater than any of its parts”  doesn’t hold for infinite sets; 

for infinite sets, the whole is not greater than each of its proper parts.  In fact, the essence of being infinite is 
that "the whole is greater than each of its proper parts" is not true.  Instead, in the infinite realm, the whole 
is equivalent to some of its proper parts. 

 
Does this mean that infinite sets are “absurd” or “irrational”?  No, of course not;  they are just 

different, like fractions are different from whole numbers, or irrationals from rationals, or imaginary 
numbers from real ones. 

 
Operations with sets 
 

Since the concept of "set" is more fundamental, at least in modern mathematics, than is the concept 
of "number", we are going to define operations with numbers, like addition, in terms of operations with 
sets.  So we need to talk about ways to put two sets "together".   

The first operation is the "union" of two sets.  "Union" here has much the same idea as it does in 
American politics:  the Union is formed by putting a group of states into one big country.  The union of A 
and B is the set whose members are either members of A or members of B.  It is denoted by A ∪ B. 

 
Example 8: A = {1, 2, 3, 4} B = {3, 5, 7}  A ∪ B = {1, 2, 3, 4, 5, 7} 
 Note that even though 3 is in both A and B, it is only listed once in A∪ B. 
 
The second operation is the “intersection” of two sets.  "Intersection" means much the same as the 

intersection of two roads: it’s where they cross or overlap.  The intersection of A and B is the set whose 
members are  members of both A and B.  It is denoted by A ∩ B. 

 
Example 9 A = {1, 2, 3, 4} B = {3, 5, 7}  A ∩ B = {3} 
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If A and B have none of the same  members, they are called "disjoint".  This means their intersection 
contains no members.  This brings us to a concept analogous to the number zero.   It is common today to use 
the notation " ∅ "; this is called the "empty set". 

 
Example 10: A = {1,2} B = {5,7,8} A ∩ B = ∅   
 
The operations of union and intersection of sets have some very important properties.  For instance, 

one property they share with addition and multiplication is that order doesn't matter, i.e.,        A ∪ B = B ∪ 
A   and   A ∩ B = B ∩ A.  We won't need to pursue such properties any further for our purposes. 

 
Addition of whole numbers 

 
So you believe 2+2=4.  Why?  If you had to explain why in terms of more fundamental concepts, 

how would you do it?  How does addition really work?  Here's a simple approach through the use of sets.   
To add two numbers "a" and "b", we start by finding two disjoint sets A and B containing a and b 

members.  Then, quite naturally, a + b = number of members of  A ∪ B.  If you owned 12 sheep, and your 
neighbor owned 16 sheep, and you put them in one field and counted sheep, you would find that 12 + 16 = 
28.  Here's the more abstract approach: 

 
Example 11:  2 + 3 = ? 
 A = {x,y} B = {r,s,t} 
 2 + 3  = the number of elements in A ∪ B.  
  = the number of elements in {x,y,r,s,t}  
  = 5. 
 
All of the properties of addition can be derived from this definition of what addition is.  For 

instance, the fact that a + b = b + a is proved by using the fact that   A ∪ B = B ∪ A. 
 
Now all of this should make good sense for regular counting numbers, i.e., finite numbers.  It seems 

reasonable, then, that it at least makes sense to try to use this definition of addition of numbers with infinite 
numbers.  There's no good reason for simply asserting that addition with infinity makes no sense.  How 
would you know that?  So, let's give it a try. 

Let's start with something simple.  How about 1 +ℵ0 ?  We proceed as above: we look for two 

disjoint sets, the first having  one member and the second having ℵ0  members.  Let A = {1} and B = {2, 3, 4, 

5, . . . }.  Then 1 +  ℵ0 = the number of elements in A ∪ B = the number of elements in {1, 2, 3, . . . } =ℵ0 . 
 
So 1 +ℵ0 = ℵ0 .  This is different, but not illogical.   Just different.  Would you have expected 

anything less?  Infinity is different, so it should not be surprising if the rules about adding would look 

different.  But "different" isn't  "nonsense".  2 wasn’t a rational number, but that didn’t make it illogical.  
Gauss’s non-Euclidean geometry was different, but it wasn’t nonsense. 

 
How about a harder problem?  What is ℵ0 +ℵ0 = ?  Again, we search for two disjoint sets.  Let's use 

A = {1, 3, 5, 7,. . . }  and  B = {2, 4, 6, 8, . . .}.  Then 
ℵ0 +ℵ0   =  the number of members in {1, 2, 3, 4, . . .} = ℵ0 .  Yes, ℵ0  + ℵ0  =  ℵ0 . 

 
By the way, it follows logically that  ℵ0 + ℵ0 + ℵ0  = ℵ0 .   Three infinities, added together, give you 

the same infinity.  Now, where have you ever heard of such a thing before?  Yes, it appears that how adding 
infinities works in mathematics is somewhat analogous to the Trinity.  Notice I said, "somewhat analogous".  
God is not the same as infinity in mathematics.  On the other hand, the doctrine of the Trinity is sometimes 
criticized as being nonsense.  Well, it may seem somewhat mysterious to our finite minds, but that doesn't 
make it nonsense.   
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The mathematician who first developed these ideas about infinity was Georg Cantor, who lived 
about 100 years ago.  Cantor was a mathematician whose researches into standard problems in 
mathematical physics led him to the concept of infinite sets which he regarded as actually infinite.  Cantor's 
ideas were criticized and rejected by many mathematicians, and he was persecuted for his views.  For his 
part, Cantor believed that his study of infinite numbers was a religious quest.  Here are some of his words.  
(He used the word "transfinite" to describe numbers that are infinite.) 
 
 "Nature makes frequent use of [the actual infinite] everywhere, in order 

to show more effectively the perfections of its Author."130 
 
 "I entertain no doubts as to the truth of the transfinites, which I have 

recognized with God's help. . . "131 
 
 "The absolute [God] can only be acknowledged and admitted, never 

known, not even approximately."132 
 

Cantor believed that infinite numbers were a necessary part of mathematics.  As you can see, he 
firmly believed that God had aided him in the study of infinite numbers.  He asserted that a whole theory of 
infinite numbers could be developed which made sense and was understandable.  But he was also very 
clear to separate the infinity of mathematics from the Infinite of theology.  God is the Almighty Creator; the 
actual infinity of mathematics is merely one of His creations. 

Here are some assertions that I believe are helpful to make at this point to clarify the relation ship 
between mathematics and theology. 

 1.  God is "infinite".   
The typical approach used in explaining this  statement is to say what God is not:  
He is not limited by time and space, He is not limited in power, etc.  That is, He is 
not finite like us.  The problem with this is that it really starts with us, with the 
finite.  As we saw above in the mathematical context, we can start with finite sets 
and define infinite sets as the ones that are not finite.  OR, we could start with 
infinite sets.  In some ways, that really is preferable in mathematics.  In theology, it 
definitely is  very important to begin with  God.   
 

2.  We are finite, fallen creatures made in the image of the infinite Creator.   
 We are made in the image of God, meaning He made us in some ways like Himself.  

On the other hand, we are limited by our finiteness, the fact that we are created 
beings.  We are also, at least at the moment, limited by our fallenness.  Sin has had 
far-reaching consequences.  One day these will no longer affect us, but for now 
some of these consequences have only begun to be removed. 

 
3.  Christian theology is rational, but God is suprarational. 

God's thinking is "higher" than our thinking, although ours is "in His image", and 
therefore not totally different than His.  Theology is our human attempt to state 
God's truth in our terms.   

 
 

4.  We can know sufficient truth about God, but not the whole truth.    

                                                 
130Quoted in:  Dauben, Joseph.  Georg Cantor:  His Mathematics and Philosophy of the Infinite. Princeton 
University Press, Princeton, 1979,  p. 124. 
131Ibid.  p. 147. 
132Quoted in Moore, A. W.  The Infinite.  Routledge, London, 1991, p. 128. 
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 The whole truth about God is of necessity beyond our comprehension.  But that 
doesn't mean we can't know anything true about God.  In fact, He is clear in telling 
us that the Bible is adequate to accurately communicate to us what we need to 
know about Him. 

 
Back to the mathematics of infinity.  You might ask, "OK, I follow you so far.  Are we done?"  Not 

quite.  Recall that in Flatland, after A. Square was convinced about the existence of a third dimension, he 
reasoned that there should be a fourth dimension, a fifth dimension, ad infinitum?   

Think back to finite sets for a moment.  Earlier we talked about a set being a proper subset of 
another set.   
 
  Theorem 1: The set of all proper subsets of a finite set is larger than the set itself. 
 
  Example 12:  If B = { 2, 4, 6 }, then the set of all proper subsets of B would be  
    { {2}, {4}, {6}, {2,4}, {2,6}, {4,6}, {Ø} }.  This set contains 7 members, whereas the original 

set B contained only 3. 
 
Hopefully, one example is enough to convince you that this would always happen for finite sets.   
 

Since it may be helpful to understand the proof below, let me elaborate on the example in a way 
that may seem unnecessarily complicated at the moment.  If I attempted to establish a 1-1 correspondence 
between the set { 2,4,6 } and its set of proper subsets, I might write: 

 2  <-->  {4}          4  <-->  {2,4}        6  <-->  {6} . 
The observation we need to make is that some numbers, like 2, are matched to sets that don't 

include them, whereas other numbers, like 4 and 6, are matched to sets that do include them. 
 
Since the theorem above is true for finite sets, it shouldn't seem unreasonable or irrational to think 

the corresponding result might be true for infinite numbers.  Consider an example.  If we start with the set 
{1,2,3,4,5,....}, which has  ℵ0   members, and we form the set of all proper subsets of this set, the new set we 

just formed would have a certain (infinite) number of members.  What number would that be?   Cantor's 
answer is that  that number is not  ℵ0 ; it's larger than  ℵ0 .  What's larger than infinity, you say?  Well, the 

point is that "infinity" is not synonymous with "biggest possible number".    
 
Theorem 2:  The set of all proper subsets of any set has a larger cardinal number than the original 

set. 
 
Proof:  Let A be the original set.  Let S be the set of all the proper subsets of A.  We want to prove 

that there is no 1-1 correspondence between A and S, which implies that the cardinal number of 
S must be larger.  (There are actually some technical difficulties which we are omitting, only 
because they would be too time consuming.)  We assume to the contrary that there is a 1-1 
correspondence between A and S. 

Each element a in the set A is matched with some set Y in S.  Form a set W of all the 
elements a from A which are matched to a set S which does not contain a.   Since W is a subset 
of A, some element of A is matched to W.  Call this element of A by the designation z. 

Now z is not an element of W  because W consists precisely of the elements of A which are 
not in the set to which they are matched.   So z must be an element of W.  But if z is an element 
of W, it must not be in the set to which it is matched.  Since it is matched to W, z must not be in 
W.  We have a contradiction. 

Thus our original assumption must be incorrect.  That is, there cannot be a 1-1 
correspondence between A and S.  This concludes the proof. 

 
     This theorem leads to the following  conclusion, which may seem surprising to some, 

but perhaps not to others. 
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  Theorem  3:  There is an unending progression of larger and larger infinities!  There is no largest 

number. 
 
And with Cantor,  we affirm that God is beyond them all. 
 

Oh the depth of the riches of the wisdom 
And knowledge of God! 

How unsearchable his judgments, 
And his paths beyond tracing out! 

 
"Who has known the mind of the Lord?  

Or who has been his counselor?" 
"Who has ever given to God  
That God should repay him?" 

 
For from him and through him and to him are all things. 

To him be the glory forever! Amen.133 
 

 
Application of Sets 
 

A survey of 80 Biola freshman revealed the following results: 

 36 were enrolled in a math class (Math 120?) 

 32 were enrolled in an English class 

 30 were enrolled in a history class 

 16 were enrolled in an English class and a history class 

 14 were enrolled in math and English 

 16 were enrolled history and math 

   6 were enrolled in all three 

 

By simply looking at the above results are you able to answer questions such as the following: 

 Were there students in the survey who didn’t take any of the three classes? If so, how many? 

 How many students took only math? 

 How many students took math and history but did not take English? 

 

Doubtful, but making use of sets and the set operations of union and intersection will allow us to easily 
answer such questions. 
 
 
 
 
 
 
 
 

                                                 
133 Romans 11:33-36 
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Our Universe Set, U, is made up of all the students surveyed, Set M contains all those taking math, Set E 

those taking English and Set H those taking history. The provided information indicates that there is an 

intersection of each of these sets as reflected in the diagram below, called a Venn diagram. 

 
Area a represents those students taking all three classes, areas a and b together represent those taking math 
and English which means that since a + b = 14 and a = 6 then b = 8. With this understanding, we can  fill in 
each of the areas with the appropriate number of students as illustrated below. 

 
 We can now answer the questions without too much difficulty. 

 1.  How many of the students took none of the three classes? 

  Solution:  80 - (a + b + c + d + e + f + g) = 80 - 58 = 22 

 2. How many took only mathematics? 

  Solution:  36 - (a + b + c) = 36 - 24 = 12 

 3. How many took math and history but did not take English? 

  Solution: a + c = those who took math and history, but those in area a took   
   English as well, therefore the answer is c = 8 
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CHAPTER 25:  Sets and Infinite Numbers   Homework  
 
 
 1. Which of the following are proper subsets of {1,2,3,4,5,6}? 
 
  a. {1}      b. {7}       c. {2,4,6}      d. {3,9} 
 
 2.   Write all the proper subsets of  
 
  a) {1,2} b)  {a,b,c} c)  {2,4,6,8} 
 
 
 3. Which of the following sets are infinite? 
 
  a. {1,4,9,16,....}     
  

  b. {1,10, 100, ....,10
10000

}      
  
  c. the set of all grains of sand on all the beaches of the earth. 
 
  d. the set of all ordered pairs of numbers that make   y = 3x + 5 a true statement 
 
 
 4. Display a 1 – 1 correspondence between {1,2,3,4} and {a,b,c,d}. 
 
 
 5. Display a 1 – 1 correspondence between {1,2,3,4,....} and {1,3,5,7,....}. 
 
 
 6. {1,2,....,100} is a proper subset of {1,2,3,....}.  Can you find a 1 – 1 correspondence between the two sets?  

Does this contradict the statement that {1,2,3,....} is infinite? 
 
 
 7. How many members does each set have? 
 
  a. {1,2,3,....,100} 
 
  b. {1,2,3,....} 
  
  c. {3,4,5,....} 
 
  d. { 5,10, 15,20....} 
 
 
 8. For A = {2,4,5,8,9} and B = {3,5,7,9}, find 
 
  a.  A ∪ B  b.  A ∩ B  
 
 9. For A = {2,4,5,6} and B = {1,3,7}, find 
 
  a.  A ∪ B  b.  A ∩ B  
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 10. Use sets to compute  
 
  a.  3 + 1 b.  2 + 4 
 
 
 11. Use sets to compute  
 
  a.  2 + ℵ0 b.  3 + ℵ0  

 
 12. Answer the following. 
 
  a.  7 +ℵ0 = 

 
  b.  ℵ0   + ℵ0   + ℵ0   + ℵ0 = 

 
  c.  2 • ℵ0   = 

 
  d.  ℵ0 – 1 = 

 
e. ℵ0 – 10000 = 

 
 

EXTRA CREDIT: #13, #14 
 
13. For each of the following, draw a Venn Diagram to understand the problem and answer  

 the accompanying questions. 

 

a. Interviews of 150 people concerning their Sunday morning habits yielded the   
 following: 80 attended church, 40 attended Sunday School and 25 attended both. 
 

  1) How many attended church only? 

  2) How many attended neither? 

 

 

b. In a survey of 500 Biola students, it was found that 200 students were enrolled in   
 Math 120, 180 were enrolled in Bible, 170 in Science, 40 in Math 120 and Bible,   
 45 in Bible and Science, 50 in Math 120 and Science and 14 in all three. 
 

  1) How many students were enrolled in none of these classes? 

  2) How many were taking only Math 120? 

  3) How many were taking at least two of the classes? 

  4) How many were taking Math 120 and Bible but were not taking Science? 

 

 

c. A political party is in the process of selecting a candidate for a statewide office.   
 Three candidates, A, B and C are under consideration. A survey of 300 party   
 members is conducted to determine which of the three candidates they could vote  
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 for with the following results: 130 selected A, 110 selected B, 160 selected C,  
 80 selected A and B, 65 selected A and C and 40 selected B and C. 27 selected  
 all three. 
 

  1) How many selected only A? 

  2) How many did not select a candidate? 

  3) How many selected B and C but did not select A? 

 

14. A survey of 500 farmers showed that 125 farmers grew only wheat, 110 farmers grew  
 only corn and 90 grew only oats. 200 farmers grew wheat, 60 grew wheat and corn, 50  
 grew wheat and oats, 180 grew corn. 
 

  1) How many grew at least one of the three? 

  2) How many grew all three? 

  3) How many did not grow any of the three? 

  4) How many grew exactly two of the three? 

  
 

 
Answers: 
  1. a, c      
  2. a. {1}. {2}, Ø b.  {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, Ø 
       c. (Hint: there are 15 of them)  
  3.  a.  infinite b.  finite  
  4. One correct answer is: 1<-->a, 2<-->b, 3<-->c, 4<-->d 
  6. No, there is no such 1 – 1 correspondence.  Saying that {1,2,3,...} is infinite says that it can be put 

into 1 – 1 correspondence with at least one of its proper subsets, not with all of them. 
  7. a. 100     b. ℵ0      

  8. a.  {2,3,4,5,7,8,9}     b. {5,9} 
  10. a.  A = {a,b,c}    B = {d}    
     3 + 1 = number of members of A ∪ B  = {a,b,c,d}, namely 4 
   b. A = {a,b}    B = {u,v,w,x} 
    2 + 4 = number of members of A ∪ B  = {a,b,u,v,w,x}, namely 6 
  11. a. A = {1,2}   B = {3,4,5,...} 
    2 + ℵ0 = number of members of {1,2,3,4,....}, namely ℵ0 
   b. A = {1,2,3}   B = {4,5,6,7,.....} 

    3 + ℵ0 = number of members of {1,2,3,4,....}, namely ℵ0 

  12. a.  ℵ0     b.  ℵ0     c.   ℵ0 , since 2 •ℵ0 = ℵ0  + ℵ0 

   d.  ℵ0      since ℵ0  = 1 +ℵ0 ,  and we can subtract 1 from both sides. 

 e.  ℵ0  
 
 


